Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
International Journal of Production Economics ; : 108921, 2023.
Article in English | ScienceDirect | ID: covidwho-2325084

ABSTRACT

The goal of pandemic response is to provide the greatest protection, for the most people, in the least amount of time. Short response times minimize both current and future health impacts for evolving pathogens that pose global threats. To achieve this goal, efficient and effective systems are needed for distributing and administering vaccines, a cornerstone of pandemic response. COVID-19 vaccines were developed in record time in the U.S. and abroad, but U.S. data shows that they were not distributed efficiently and effectively once available. In an effort to "put vaccines on every corner”, pharmacies and other small venues were a primary means for vaccinating individuals, but daily throughput rates at these locations were very low. This contributed to extended times from manufacture to administration. An important contributing factor to slow administration rates for COVID-19 was vaccine transport and storage box size. In this paper, we establish a general system objective and provide a computationally tractable approach for allocating vaccines in a rolling horizon manner optimally. We illustrate the consequences of both box size and the number and capacity of dispensing locations on achieving system objectives. Using U.S. CDC data, we demonstrate that if vaccines are allocated and distributed according to our proposed strategy, more people would have been vaccinated sooner in the U.S. Many additional days of protection would have occurred, meaning there would have been fewer infections, less demand for healthcare resources, lower overall mortality, and fewer opportunities for the evolution of vaccine-evading strains of the disease.

2.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2303598

ABSTRACT

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Uncertainty , Disease Outbreaks/prevention & control , Public Health , Pandemics/prevention & control
3.
Viruses ; 14(11)2022 Oct 30.
Article in English | MEDLINE | ID: covidwho-2090370

ABSTRACT

Pregnant patients have increased morbidity and mortality in the setting of SARS-CoV-2 infection. The exposure of pregnant patients in New York City to SARS-CoV-2 is not well understood due to early lack of access to testing and the presence of asymptomatic COVID-19 infections. Before the availability of vaccinations, preventative (shielding) measures, including but not limited to wearing a mask and quarantining at home to limit contact, were recommended for pregnant patients. Using universal testing data from 2196 patients who gave birth from April through December 2020 from one institution in New York City, and in comparison, with infection data of the general population in New York City, we estimated the exposure and real-world effectiveness of shielding in pregnant patients. Our Bayesian model shows that patients already pregnant at the onset of the pandemic had a 50% decrease in exposure compared to those who became pregnant after the onset of the pandemic and to the general population.


Subject(s)
COVID-19 , SARS-CoV-2 , Pregnancy , Female , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , New York City/epidemiology , Bayes Theorem
4.
PLoS One ; 17(3): e0266127, 2022.
Article in English | MEDLINE | ID: covidwho-1833646

ABSTRACT

BACKGROUND: City-wide lockdowns and school closures have demonstrably impacted COVID-19 transmission. However, simulation studies have suggested an increased risk of COVID-19 related morbidity for older individuals inoculated by house-bound children. This study examines whether the March 2020 lockdown in New York City (NYC) was associated with higher COVID-19 hospitalization rates in neighborhoods with larger proportions of multigenerational households. METHODS: We obtained daily age-segmented COVID-19 hospitalization counts in each of 166 ZIP code tabulation areas (ZCTAs) in NYC. Using Bayesian Poisson regression models that account for spatiotemporal dependencies between ZCTAs, as well as socioeconomic risk factors, we conducted a difference-in-differences study amongst ZCTA-level hospitalization rates from February 23 to May 2, 2020. We compared ZCTAs in the lowest quartile of multigenerational housing to other quartiles before and after the lockdown. FINDINGS: Among individuals over 55 years, the lockdown was associated with higher COVID-19 hospitalization rates in ZCTAs with more multigenerational households. The greatest difference occurred three weeks after lockdown: Q2 vs. Q1: 54% increase (95% Bayesian credible intervals: 22-96%); Q3 vs. Q1: 48% (17-89%); Q4 vs. Q1: 66% (30-211%). After accounting for pandemic-related population shifts, a significant difference was observed only in Q4 ZCTAs: 37% (7-76%). INTERPRETATION: By increasing house-bound mixing across older and younger age groups, city-wide lockdown mandates imposed during the growth of COVID-19 cases may have inadvertently, but transiently, contributed to increased transmission in multigenerational households.


Subject(s)
COVID-19 , Bayes Theorem , COVID-19/epidemiology , Child , Communicable Disease Control , Hospitalization , Humans , New York City/epidemiology , SARS-CoV-2
5.
Journal of clinical and translational science ; 5(Suppl 1):72-72, 2021.
Article in English | EuropePMC | ID: covidwho-1710627

ABSTRACT

IMPACT: Patients living in overcrowded zip codes were at increased risk of contracting severe COVID-19 after controlling for confounding disease and socioeconomic factors OBJECTIVES/GOALS: This study sought to examine whether residences in over-crowded zip codes with higher reported over-crowding represented an independent risk factor for severe COVID-19 infection, defined by presentation to an emergency department. METHODS/STUDY POPULATION: In this zip code tabulated area (ZCTA)-level analysis, we used NYC Department of Health disease surveillance data in March 2020 merged with data from the CDC and ACS to model suspected COVID-19 case rates by zip code over-crowdedness (households with greater than 1 occupant per room, in quartiles). We defined suspected COVID-19 cases as emergency department reported cases of pneumonia and influenza-like illness. Our final model employed a multivariate Poisson regression models with controls for known COVID-19 clinical (prevalence of obesity, coronary artery disease, and smoking) and related socioeconomic risk factors (percentage below federal poverty line, median income by zip-code, percentage White, and proportion of multigenerational households) after accounting for multicollinearity. RESULTS/ANTICIPATED RESULTS: Our analysis examined 39,923 suspected COVID-19 cases across 173 ZCTAs in NYC between March 1 and March 30 2020. We found that, after adjusted analysis, for every quartile increase in defined over-crowdedness, case rates increased by 32.8% (95% CI: 22.7%% to 34.0%, P < 0.001). DISCUSSION/SIGNIFICANCE OF FINDINGS: Over-crowdedness by zip code may be an independent risk factor for severe COVID-19. Social distancing measures such as school closures that increase house-bound populations may inadvertently worsen the risk of COVID-19 contraction in this setting.

6.
Lancet Reg Health Am ; 8: 100182, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1620909

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccines are administered worldwide, the COVID-19 pandemic continues to exact significant human and economic costs. Mass testing of unvaccinated individuals followed by isolation of positive cases can substantially mitigate risks and be tailored to local epidemiological conditions to ensure cost effectiveness. METHODS: Using a multi-scale model that incorporates population-level SARS-CoV-2 transmission and individual-level viral load kinetics, we identify the optimal frequency of proactive SARS-CoV-2 testing, depending on the local transmission rate and proportion immunized. FINDINGS: Assuming a willingness-to-pay of US$100,000 per averted year of life lost (YLL) and a price of $10 per test, the optimal strategy under a rapid transmission scenario (Re ∼ 2.5) is daily testing until one third of the population is immunized and then weekly testing until half the population is immunized, combined with a 10-day isolation period of positive cases and their households. Under a low transmission scenario (Re ∼ 1.2), the optimal sequence is weekly testing until the population reaches 10% partial immunity, followed by monthly testing until 20% partial immunity, and no testing thereafter. INTERPRETATION: Mass proactive testing and case isolation is a cost effective strategy for mitigating the COVID-19 pandemic in the initial stages of the global SARS-CoV-2 vaccination campaign and in response to resurgences of vaccine-evasive variants. FUNDING: US National Institutes of Health, US Centers for Disease Control and Prevention, HK Innovation and Technology Commission, China National Natural Science Foundation, European Research Council, and EPSRC Impact Acceleration Grant.

7.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: covidwho-1617035

ABSTRACT

COVID-19 remains a stark health threat worldwide, in part because of minimal levels of targeted vaccination outside high-income countries and highly transmissible variants causing infection in vaccinated individuals. Decades of theoretical and experimental data suggest that nonspecific effects of non-COVID-19 vaccines may help bolster population immunological resilience to new pathogens. These routine vaccinations can stimulate heterologous cross-protective effects, which modulate nontargeted infections. For example, immunization with Bacillus Calmette-Guérin, inactivated influenza vaccine, oral polio vaccine, and other vaccines have been associated with some protection from SARS-CoV-2 infection and amelioration of COVID-19 disease. If heterologous vaccine interventions (HVIs) are to be seriously considered by policy makers as bridging or boosting interventions in pandemic settings to augment nonpharmaceutical interventions and specific vaccination efforts, evidence is needed to determine their optimal implementation. Using the COVID-19 International Modeling Consortium mathematical model, we show that logistically realistic HVIs with low (5 to 15%) effectiveness could have reduced COVID-19 cases, hospitalization, and mortality in the United States fall/winter 2020 wave. Similar to other mass drug administration campaigns (e.g., for malaria), HVI impact is highly dependent on both age targeting and intervention timing in relation to incidence, with maximal benefit accruing from implementation across the widest age cohort when the pandemic reproduction number is >1.0. Optimal HVI logistics therefore differ from optimal rollout parameters for specific COVID-19 immunizations. These results may be generalizable beyond COVID-19 and the US to indicate how even minimally effective heterologous immunization campaigns could reduce the burden of future viral pandemics.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Models, Theoretical , SARS-CoV-2/immunology , Seasons , Vaccination/methods , Algorithms , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Hospital Mortality , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Pandemics/prevention & control , Patient Admission/statistics & numerical data , SARS-CoV-2/physiology , Survival Rate , United States/epidemiology , Vaccination/statistics & numerical data
8.
PLoS One ; 16(11): e0257979, 2021.
Article in English | MEDLINE | ID: covidwho-1526683

ABSTRACT

Public health interventions such as social distancing and mask wearing decrease the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether they decrease the viral load of infected patients and whether changes in viral load impact mortality from coronavirus disease 2019 (COVID-19). We evaluated 6923 patients with COVID-19 at six New York City hospitals from March 15-May 14, 2020, corresponding with the implementation of public health interventions in March. We assessed changes in cycle threshold (CT) values from reverse transcription-polymerase chain reaction tests and in-hospital mortality and modeled the impact of viral load on mortality. Mean CT values increased between March and May, with the proportion of patients with high viral load decreasing from 47.7% to 7.8%. In-hospital mortality increased from 14.9% in March to 28.4% in early April, and then decreased to 8.7% by May. Patients with high viral loads had increased mortality compared to those with low viral loads (adjusted odds ratio 2.34). If viral load had not declined, an estimated 69 additional deaths would have occurred (5.8% higher mortality). SARS-CoV-2 viral load steadily declined among hospitalized patients in the setting of public health interventions, and this correlated with decreases in mortality.


Subject(s)
COVID-19/virology , Hospital Mortality/trends , Viral Load/statistics & numerical data , COVID-19/epidemiology , COVID-19/mortality , COVID-19 Nucleic Acid Testing/statistics & numerical data , Female , Humans , Male , New York , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
9.
Mol Med ; 27(1): 112, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1413278

ABSTRACT

The ongoing global COVID-19 pandemic has thrown into sharp relief the gap between modern biology's ability to investigate and respond to a novel pathogen and modern medicine's ability to marshal effective front-line interventions to limit its immediate health impact. While we have witnessed the rapid development of innovative vaccines against SARS-CoV-2 using novel molecular platforms, these have yet to alter the pandemic's long-term trajectory in all but a handful of high-income countries. Health workers at the clinical front lines have little more in their clinical armamentarium than was available a century ago-chiefly oxygen and steroids-and yet advances in modern immunology and immunotherapeutics suggest an underuse of extant and effective, if unorthodox, therapies, which we now call "Extreme Immunotherapies for Pandemics (EIPs)."


Subject(s)
Pandemics/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , Humans , Immunotherapy/methods , SARS-CoV-2/immunology
10.
Mol Med ; 27(1): 54, 2021 05 31.
Article in English | MEDLINE | ID: covidwho-1249543

ABSTRACT

While vaccines traditionally have been designed and used for protection against infection or disease caused by one specific pathogen, there are known off-target effects from vaccines that can impact infection from unrelated pathogens. The best-known non-specific effects from an unrelated or heterologous vaccine are from the use of the Bacillus Calmette-Guérin (BCG) vaccine, mediated partly through trained immunity. Other vaccines have similar heterologous effects. This review covers molecular mechanisms behind the heterologous effects, and the potential use of heterologous vaccination in the current COVID-19 pandemic. We then discuss novel pandemic response strategies based on rapidly deployed, widespread heterologous vaccination to boost population-level immunity for initial, partial protection against infection and/or clinical disease, while specific vaccines are developed.


Subject(s)
BCG Vaccine/immunology , COVID-19/prevention & control , Pandemics , Vaccines/immunology , BCG Vaccine/therapeutic use , COVID-19/immunology , COVID-19/virology , Humans , Immunity, Heterologous/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Vaccines/therapeutic use
11.
EClinicalMedicine ; 32: 100758, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1242959
13.
Hum Vaccin Immunother ; 17(8): 2451-2453, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1066196

ABSTRACT

Bacillus Calmette-Guérin (BCG) vaccine is known to have "bystander benefits" in protecting against heterologous infections; interim analysis of the "ACTIVATE" trial shows protection against respiratory infections in the elderly population. Epidemiologic studies suggest a potential benefit of BCG vaccination on COVID-19 outcomes. Differential past BCG vaccination policies between the former East and West German states provides a unique natural experiment to assess the potential effect of prior BCG vaccination on COVID-19. We estimated a 5% heterologous vaccine efficacy in the highly vaccinated former East Germany using the COVID-19 International Modeling (CoMo) Consortium model. A comparable BCG vaccination campaign undertaken prior to the pandemic in former West Germany, instituted along with known country-wide transmission reduction measures, is associated with a 37% decrease in projected mortality by mid-summer, 2020. These findings support a combined heterologous vaccine and non-pharmaceutical interventions (HVI+NPI) approach to mitigate the SARS-CoV-2 pandemic until SARS-CoV-2 specific vaccines are widely distributed.


Subject(s)
BCG Vaccine , COVID-19 , Aged , Germany/epidemiology , Humans , SARS-CoV-2 , Vaccination
14.
BMJ Glob Health ; 5(12)2020 12.
Article in English | MEDLINE | ID: covidwho-999252

ABSTRACT

The SARS-CoV-2 pandemic has had an unprecedented impact on multiple levels of society. Not only has the pandemic completely overwhelmed some health systems but it has also changed how scientific evidence is shared and increased the pace at which such evidence is published and consumed, by scientists, policymakers and the wider public. More significantly, the pandemic has created tremendous challenges for decision-makers, who have had to implement highly disruptive containment measures with very little empirical scientific evidence to support their decision-making process. Given this lack of data, predictive mathematical models have played an increasingly prominent role. In high-income countries, there is a long-standing history of established research groups advising policymakers, whereas a general lack of translational capacity has meant that mathematical models frequently remain inaccessible to policymakers in low-income and middle-income countries. Here, we describe a participatory approach to modelling that aims to circumvent this gap. Our approach involved the creation of an international group of infectious disease modellers and other public health experts, which culminated in the establishment of the COVID-19 Modelling (CoMo) Consortium. Here, we describe how the consortium was formed, the way it functions, the mathematical model used and, crucially, the high degree of engagement fostered between CoMo Consortium members and their respective local policymakers and ministries of health.


Subject(s)
COVID-19 , Internationality , Models, Theoretical , Pandemics , Research , COVID-19/physiopathology , Culture , Delivery of Health Care/organization & administration , Global Health , Health Policy , Humans , Public Health , SARS-CoV-2 , Social Class , Uncertainty
15.
Trends Immunol ; 42(2): 91-93, 2021 02.
Article in English | MEDLINE | ID: covidwho-988125

ABSTRACT

Immunologists are central to fighting any pandemic. From pathogenesis to disease modeling, pharmaceuticals to vaccines, immunologists play a crucial role in translating basic science into effective response strategies. This article describes our view on how lessons from the coronavirus disease 2019 (COVID-19) pandemic can be developed into an immunologists' guide for preparedness for future pandemics.


Subject(s)
Allergy and Immunology/trends , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Animals , Arthritis, Infectious/immunology , Humans , Immunity , Pandemics , Practice Guidelines as Topic , Public Health , Translational Research, Biomedical , Vaccination , Vaccines , World Health Organization
16.
Disaster Med Public Health Prep ; 16(1): 390-397, 2022 02.
Article in English | MEDLINE | ID: covidwho-752629

ABSTRACT

OBJECTIVE: Health system preparedness for coronavirus disease (COVID-19) includes projecting the number and timing of cases requiring various types of treatment. Several tools were developed to assist in this planning process. This review highlights models that project both caseload and hospital capacity requirements over time. METHODS: We systematically reviewed the medical and engineering literature according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We completed searches using PubMed, EMBASE, ISI Web of Science, Google Scholar, and the Google search engine. RESULTS: The search strategy identified 690 articles. For a detailed review, we selected 6 models that met our predefined criteria. Half of the models did not include age-stratified parameters, and only 1 included the option to represent a second wave. Hospital patient flow was simplified in all models; however, some considered more complex patient pathways. One model included fatality ratios with length of stay (LOS) adjustments for survivors versus those who die, and accommodated different LOS for critical care patients with or without a ventilator. CONCLUSION: The results of our study provide information to physicians, hospital administrators, emergency response personnel, and governmental agencies on available models for preparing scenario-based plans for responding to the COVID-19 or similar type of outbreak.


Subject(s)
COVID-19 , Surge Capacity , COVID-19/epidemiology , Disease Outbreaks , Hospitals , Humans , SARS-CoV-2
18.
Sci Transl Med ; 12(554)2020 07 29.
Article in English | MEDLINE | ID: covidwho-610874

ABSTRACT

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date has relied heavily on reverse transcription polymerase chain reaction testing. However, limited test availability, high false-negative rates, and the existence of asymptomatic or subclinical infections have resulted in an undercounting of the true prevalence of SARS-CoV-2. Here, we show how influenza-like illness (ILI) outpatient surveillance data can be used to estimate the prevalence of SARS-CoV-2. We found a surge of non-influenza ILI above the seasonal average in March 2020 and showed that this surge correlated with coronavirus disease 2019 (COVID-19) case counts across states. If one-third of patients infected with SARS-CoV-2 in the United States sought care, this ILI surge would have corresponded to more than 8.7 million new SARS-CoV-2 infections across the United States during the 3-week period from 8 to 28 March 2020. Combining excess ILI counts with the date of onset of community transmission in the United States, we also show that the early epidemic in the United States was unlikely to have been doubling slower than every 4 days. Together, these results suggest a conceptual model for the COVID-19 epidemic in the United States characterized by rapid spread across the United States with more than 80% infected individuals remaining undetected. We emphasize the importance of testing these findings with seroprevalence data and discuss the broader potential to use syndromic surveillance for early detection and understanding of emerging infectious diseases.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/epidemiology , Influenza, Human/epidemiology , Pneumonia, Viral/epidemiology , Population Surveillance , COVID-19 , Coronavirus Infections/mortality , Humans , Pandemics , Patient Acceptance of Health Care , Pneumonia, Viral/mortality , Prevalence , SARS-CoV-2 , Syndrome , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL